Aug 16, 2025

Compare AI RAG Tooling (2025)

By Core API Team
RAGRetrievalEmbeddings2025

Compare AI RAG Tooling (2025)

RAG systems combine embedding, storage, and retrieval with LLM reasoning. This guide compares popular stacks and shows how to wire calls through a unified API.

At‑a‑glance

StackStrengthsTrade‑offsBest for
OpenAI + pgvectorSimple, reliable, SQL ecosystemManaged Postgres costsProduct docs, app search
OpenAI/Ada + PineconeScalable vector DB, hybrid searchVendor lock‑inLarge knowledge bases
Cohere/Embed + WeaviateFilters, hybrid, OSS optionOps overhead (self‑host)Privacy‑sensitive data
Voyage/Embed + MilvusHigh‑perf, cost‑effectiveInfra complexityBig embeddings at scale

Feature comparison

CapabilityOpenAI + pgvectorPineconeWeaviateMilvus
Hybrid (BM25+Vec)✅ (with ext.)✅ (via stack)
Metadata filters
Multi‑tenant
Managed option✅ (Cloud)✅ (Cloud)

Unified API examples

Create embeddings — JavaScript

import axios from "axios";

const res = await axios.post(
  "https://api.coreapi.com/v1/openai/embeddings",
  {
    model: "text-embedding-3-large",
    input: [
      "RAG connects your data to an LLM via retrieval.",
      "Use chunking and metadata to improve recall.",
    ],
  },
  { headers: { Authorization: `Bearer ${process.env.CORE_API_KEY}` } }
);
console.log(res.data);

Retrieve → answer — Python

import requests, os

# 1) embed the query
e = requests.post(
    "https://api.coreapi.com/v1/openai/embeddings",
    json={"model": "text-embedding-3-large", "input": "How do fallbacks work?"},
    headers={"Authorization": f"Bearer {os.environ['CORE_API_KEY']}"},
).json()
query_vec = e["data"][0]["embedding"]

# 2) search your vector DB (pseudo‑code)
# matches = vector_db.search(query_vec, top_k=5, filter={"tag": "docs"})
contexts = [m["text"] for m in []]  # replace with results

# 3) ask LLM with contexts
r = requests.post(
    "https://api.coreapi.com/v1/openai/chat/completions",
    json={
        "model": "gpt-4o-mini",
        "messages": [
            {"role": "system", "content": "Answer with provided context."},
            {"role": "user", "content": f"Context: {'\n'.join(contexts)}\nQuestion: How do fallbacks work?"},
        ],
    },
    headers={"Authorization": f"Bearer {os.environ['CORE_API_KEY']}"},
)
print(r.json())

Implementation tips

  • Chunk by structure (headings, sections) not only tokens.
  • Store metadata (source, section, updated_at) for filters and recency.
  • Evaluate with golden‑set queries; watch recall@k and answer utility.

Mori API is an AI model aggregation platform that gives developers a single, unified API to access 50+ AI models across text, image, audio, and video — with transparent pricing, real‑time analytics, and enterprise‑grade reliability.

Copyright © 2024 CoreAPI Inc
All rights reserved

Mori API is an AI model aggregation platform that gives developers a single, unified API to access 50+ AI models across text, image, audio, and video — with transparent pricing, real‑time analytics, and enterprise‑grade reliability.

Copyright © 2024 CoreAPI Inc
All rights reserved